Linguista

机器学习程序基本结构(Learn LM)

一个典型的机器学习程序,特别是基于PyTorch的CNN模型,通常由以下几个主要部分组成:

1. 数据准备 (Data Preparation)

2. 模型定义 (Model Definition)

3. 训练循环 (Training Loop)

4. 验证 (Validation)

5. 测试 (Testing)

6. 模型部署 (Model Deployment) (可选)

基于PyTorch CNN模型的代码示例框架 (简化版):

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
import os

# 1. 数据准备
class CustomDataset(Dataset):
    def __init__(self, data_dir, transform=None):
        # 加载数据和标签
    def __len__(self):
        # 数据集大小
    def __getitem__(self, idx):
        # 返回一个数据样本

data_transforms = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

train_dataset = CustomDataset(train_dir, transform=data_transforms)
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)

val_dataset = CustomDataset(val_dir, transform=data_transforms)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)

test_dataset = CustomDataset(test_dir, transform=data_transforms)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)

# 2. 模型定义
class SimpleCNN(nn.Module):
    def __init__(self, num_classes):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
        self.relu1 = nn.ReLU()
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.relu2 = nn.ReLU()
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.fc1 = nn.Linear(32 * 56 * 56, num_classes)

    def forward(self, x):
        x = self.pool1(self.relu1(self.conv1(x)))
        x = self.pool2(self.relu2(self.conv2(x)))
        x = x.view(x.size(0), -1) # Flatten
        x = self.fc1(x)
        return x

model = SimpleCNN(num_classes=10)

# 3. 训练循环
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

num_epochs = 10

for epoch in range(num_epochs):
    model.train()
    for i, (images, labels) in enumerate(train_dataloader):
        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataloader), loss.item()))

    # 4. 验证
    model.eval()
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in val_dataloader:
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

        print('Validation Accuracy: {} %'.format(100 * correct / total))

# 5. 测试
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_dataloader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy: {} %'.format(100 * correct / total))

解释:

希望这个详细的解释和代码框架对你有所帮助!